
Automatic Annotation of Protein Functional

Class from Sparse and Imbalanced Data Sets

Jaehee Jung1 and Michael R. Thon1,2

1 Department of Computer Science,
2 Department of Plant Pathology & Microbiology,

Texas A&M University,College Station, TX, 77843 USA
{jaeheejung, mthon}@tamu.edu

Abstract. In recent years, high-throughput technologies such as DNA
sequencing and microarrays have created the need for automated an-
notation and analysis of large sets of genes. The Gene Ontology (GO)
provides a common controlled vocabulary for describing gene function
however the process for annotating proteins with GO terms is usually
through a tedious manual curation process by trained profession anno-
tators. With the wealth of genomic data that are now available, there
is a need for accurate automated annotation methods. In this paper, we
propose a method for automatically predicting GO terms for proteins
by applying statistical pattern recognition techniques. We employ pro-
tein functional domains as features and learn independent Support Vec-
tor Machine classifiers for each GO term. This approach creates sparse
data sets with highly imbalanced class distribution. We show that these
problems can be overcome with standard feature and instance selection
methods. We also present a meta-learning scheme that utilizes multiple
SVMs trained for each GO term, resulting in improved overall perfor-
mance than either SVM can achieve alone.
Key Word: Gene Annotation, Feature Selection, Gene Ontology, Inter-
Pro, Imbalanced Data

1 Introduction

In recent years, high-throughput genome sequencing and gene annotation meth-
ods have resulted in the availability or large sets of genes and predicted gene
products (proteins) and to a large extent, the functions of many of these genes
are still unknown, i.e. they are unannotated. Biologists deduce protein function
through experimentation and as such, knowledge of gene function derived in
this fashion is laborious and inexpensive. Given the wealth of genome data that
are available now, one of the central problems facing researchers is the accu-
rate prediction of protein function based on computationally obtained features
of the proteins and the genes from which they are derived. Such computation-
ally predicted functions are useful to guide laboratory experimentation and as
an interim annotation, until protein function can be validated experimentally.
Traditionally, protein function is expressed as free text descriptions but recently
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controlled vocabularies of various types have been employed. The Gene Ontology
(GO) [22] provides a controlled vocabulary or terms for annotating proteins. In
addition, the GO consortium describes the relationships among the terms with
a directed acyclic graph (DAG), providing a rich framework for describing the
function of proteins. GO terms are often assigned to proteins by teams of cura-
tors, who examine references in the scientific literature as well as features of the
proteins. One of the central problems facing computational biologists is how to
emulate this process.

As the need for GO annotation increases, various kinds of annotation systems
are being developed for automated prediction of GO terms. Most methods rely
on the identification of similar proteins in large databases of annotated proteins.
GOtcha [12] utilizes properties of the protein sequence similarity search results
(BLAST) such as the p-score, for predicting an association between the protein
and a set of nodes in the GO graph. Several other recently described methods,
including GOFigure [8], GOblet [5], and OntoBlast [19] depend on sequence sim-
ilarity searches of large databases to obtain features that are used for predicting
GO terms. These tools employ only blast results as attributes for prediction of
GO terms, however, several systems utilize features besides blast search results.
Vinayagam et el. [14, 15] suggest a method to predict GO terms using SVM and
feature sets including sequence similarity, frequency score the GO terms, GO
term relationship between similar proteins. Al-shahib et el. [1] use amino acid
composition, amino acid pair ratios protein length, molecular weight, isoelectric
point, hydropathy and aliphatic index as features for SVM classifiers to predict
protein function. King et el. [9] employ not only blast sequence similarity, but
also bio-chemical attributes such as molecular weight, and percentage amino
acid content. Pavlidis et el. [13] predict gene function from heterogeneous data
sets derived from DNA microarray hybridization experiments and phylogenetic
profiles.

A number of different methods have been developed to identify and catalog
protein families and functional domains which serve as useful resources for un-
derstanding protein function. The European Bioinformatics Institute (EBI) has
created a federated database called InterPro (IPR) [23] which serves as a central
reference for several protein family and functional domain databases, including
Prosite, Prints, Pfam, Prodom, SMART, TIGRFams and PIR SuperFamily. In-
terPro families and functional domains are usually assigned to proteins using
a variety of automated search tools. In addition, the InterPro consortium also
maintains an InterPro to GO translation table that allows GO terms to be as-
signed to proteins automatically, on the basis of the protein domain content of
the protein.

The availability of protein data sets annotated with GO terms and InterPro
domains provides an opportunity to study the extent to which InterPro can be
used to predict GO terms. The InterPro database contains over 12,000 entries
and the GO contains over 19,000 but proteins are usually annotated with a few
terms from each database, resulting in a sparse data set. In addition, a large set
of proteins will contain only a few positive examples of each GO term, leading
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to extremely biased class distribution in which less than 1% of the training
instances represent positive examples of a GO term.

Many studies have shown that standard classification algorithms perform
poorly with imbalanced class distribution [7, 10, 16]. The most common method
to overcome this problem is through re-sampling of the data to form a bal-
anced data set. Re-sampling methods may under-sample the majority class,
over-sample the minority class, or use a combination of both approaches. A
potential drawback of under-sampling is that effective instances can be ignored.
Over-sampling, however, is not without its problems. The most common ap-
proach is to duplicate instances from the minority class but Ling et el. [11]
show that often times this approach does not offer significant improvements
in performance of the classifier, as compared to the imbalanced data set. The
other approach is the Synthetic Minority Over-sampling Technique (SMOTE)
[2], which is an over-sampling technique with replacement in which new syn-
thetic instances are created, rather than simply duplicating existing instances.
Under-sampling can potentially be used to avoid the problems of over-sampling
[10, 20]. Under-sampling removes instances from the majority class to create a
smaller, balanced data set. While other approaches such as feature weighting
can be employed, under-sampling has the added benefit of reducing the number
of training instances that are required for training, thus reducing the difficulties
of training pattern recognition algorithms on very large data sets.

In this paper we consider the application of statistical pattern recognition
techniques to classify proteins with GO terms, using InterPro terms as the fea-
ture set. We show that many of the problems associated with sparse and im-
balance data sets can be overcome with standard feature and instance selection
methods. Feature selection in an extremely sparse feature space can produce in-
stances that lack any positive features, leading to a subset of identical instances
in the majority class. By selectively removing these duplicated instances, or keep-
ing them, we trained two SVMs that have different performance characteristics.
We describe a meta-learning scheme that combines both models, resulting in
improved performance than can be obtained by using either SVM alone.

2 Methods

2.1 Dataset

The data set used for this study was comprised of 4590 annotated proteins
from the Saccharomyces cerevisiae (Yeast) genome obtained from the UniProt
database [26]. This protein contains manually curated GO annotations as well
as InterPro terms automatically assigned with InterProScan.

The data set contains 2602 InterPro terms and 2714 GO terms with an
average of 2.06 InterPro terms and 3.99 GO terms assigned to each protein.
Table 1 illustrates the imbalanced nature of the data set. In this study, each
GO term was considered as an independent binary classification problem and
therefore, all proteins annotated with a GO term are treated as positive instances
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(GO+) and the remaining proteins treated as negative instances(GO-), resulting
in highly biased class and feature distribution. For the purpose of this study, we
only considered data sets that contained at least 10 GO+ proteins.

Table 1. Examples of randomly selected classes (GO terms) and features (InterPro
terms) illustrating the imbalanced and sparse nature of the data set.

GO term Number of Number of
Positive Negative
Examples Examples

GO:0000001 22 4568
GO:0000022 15 4575
GO:0000776 12 4578
GO:0005635 35 4555

InterPro term Number of Number of
Positive Negative
Examples Examples

IPR000002 5 2597
IPR000009 2 2600
IPR000073 13 2589
IPR000120 2 2600

2.2 Under-Sampling

Several methods are available for creating balanced data sets. If the features
are continuous, we can perform over-sampling using methods such as SMOTE
[2] which created new interpolated value for each new instance. In our case,
however, the data set is binary format so this method cannot be used. In most
cases under-sampling is considered to be better than over-sampling in terms
of changing in misclassification costs and class distribution [2]. Another issue
about the under-sampling is how ratio positive verse negative to make balanced
set is optimized for training. In the point of the dealing with the imbalanced
data problem, Al-shahib et el.[1] applied various under-sampling rates from 0%
to 100% and conclude that the fully balanced set which have same number of
positives and negatives, give the best performance. In light of this prior work, we
performed under-sampling to create fully balances data sets for each GO term.

For each data set, we performed under-sampling of the majority class (GO-
negative proteins) to create a balanced data set for SVM induction. We compared
the performance of four under-sampling methods: Farthest, Nearest, Cluster and
Random. In the first two cases, we used Euclidean distance, computed on the
basis of the InterPro term content of each protein as a measure of distance. The
Farthest and Nearest methods select proteins from the negative class that have
the greatest and least distance from the positive class respectively. The Cluster
method first performs hierarchical clustering of the negative class where the
number of clusters formed equals the number of instances in the positive class.
A single protein from each cluster is selected randomly. The Random method
randomly selects proteins from the negative class.

Let DAll be the set of all of IPR and GO data. We define the example of datset
as DAll ={(Xi, Yj)| i=1,· · ·,l,j=1,· · ·,m }, where x=(x1, x2, · · · , xk) ∈ IPR{0,1}
is a feature vectors, Y =(y1, y2, · · · , yk) ∈ GO={0,1} is the class designation.
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2.3 Feature Selection

We employed four different objective functions for feature selection: chi-squared
(χ2), information gain, symmetrical uncertainty, and correlation coefficient.

Classical linear correlation [18] measures the degree of correlation between
features and classes, and ranges from -1 to 1. If the features and the class are
totally independent, then the correlation coefficient is 0. The traditional linear
correlation method is very simple to calculate, but it assumes that there is
a linear relationship between the class and the feature, which is not always
true [18]. To overcome this shortcoming, the other correlation measures based
on the theoretical concept of entropy were also assessed for feature selection.
Information gain is a measurement based on entropy, and measures the number
of bits of information obtained for class prediction [17]. However, information
gain have non-normalized value and it is biased toward of feature with more
value. To compensate for this disadvantage, symmetrical uncertainty value is
normalized from 0 to 1 and un-biased in terms of feature content. The idea of
symmetrical uncertainty is based on the information gain, but applied value is
normalized and un-biased toward feature with more value [18]. When calculating
the contingency between features and a class of interest, the χ2 statistic measures
the lack of independence. As the χ2 statistic values increases, the dependency
between features and classes also increases [17, 18].

The features were ranked using each of the objective values and a sequen-
tial forward selection search algorithm was used for feature selection. Forward
selection was used since it is considered to be computationally more efficient
than backward elimination [4]. The feature inclusion threshold for 12 randomly
selected data sets was determined by computing the error rate during each step-
wise feature addition and finding the minimal error rate. The average threshold
value for the 12 data sets was used for the remaining data sets.

2.4 Implementation

Feature selection experiments were performed with WEKA [27]. Under-sampling
and SVM induction were performed with MATLAB [24] using the pattern recog-
nition toolbox [25].

3 Experiments

Individual data sets are constructed for each GO term which are then subjected
to feature selection and instance selection prior to SVM model induction. Be-
cause of the extremely sparse nature of the data set, the feature selection step
can remove all InterPro terms from some proteins, resulting in proteins that com-
pletely lack features. In most cases, feature selection resulted in a large number
of GO- proteins in each data set. We theorized that such a large number of re-
dundant proteins in the data sets could lead to skewed performance of the SVM
so for each GO term, we constructed two data sets. Model 1 refers to the SVM
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learned from the data set containing the redundant GO- proteins and Model 2

refers to a smaller set in which redundant proteins were removed prior to model
induction (Fig. 1). We expected that Model 2 would result in SVM with higher
accuracy than only Model 1.

Training Dataset

GO1 GO2 GO3 GOm

GO-

IPR1

IPR2

IPR3

IPR4

IPRl

Prot1 Prot2 Prot3 Prot4 Prot5 Protk

GO+

IPR Feature Selection

GO-
IPR1

IPR2

IPRl’

Prot1 Prot2 Prot3 Prot4 Prot5 Protk

GO+ GO-

………

…

…

Under-sampling

Train SVM

Model 2

Remove the Farthest

Negative Instances

from Model1

Under-sampling

Train SVM

Model 1

Fig. 1. Flow chart for the training process.

3.1 Feature and Instance Selection

We randomly selected 50 Model 1 data sets and compared the performance of
the feature selection and instance selection methods. The relative performance of
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the various methods were compared using error rate and AUC by 10-fold cross
validation. The chi-squared method outperformed the other feature selection
methods (Table 2) and was used to prepare data sets for instance selection. The
Farthest method provided the best instance selection performance (Table 3) and
was selected to create balanced data sets for SVM induction.

Table 2. Performance comparison of 4 different feature selection methods. Features
were ranked using one of four objective functions (SU: symmetrical uncertainty, INFO:
information gain, CHI: chi-squared, ABS: absolute correlation coefficient) and sequen-
tial forward selection was performed to optimize. Values represent average over 50 data
sets.

Method Sensitivity Specificity AUC Error Rate

SU 0.976 0.832 0.726 0.01
CHI 0.988 0.931 0.870 0.01
INFO 0.783 0.980 0.846 0.12
ABS 0.767 0.236 0.792 0.43

Table 3. Performance comparison of 4 different under-sampling methods. Nearest is
the result of applying for choosing negative instances as nearest method, and Farthest
is farthest negative instances. Cluster is clustering and choosing randomly negatives.
Random is randomly selected.

Method Sensitivity Specificity AUC Error Rate

Farthest 0.942 0.942 0.782 0.033
Nearest 0.731 0.789 0.737 0.517
Cluster 0.897 0.896 0.767 0.088
Random 0.872 0.928 0.765 0.083

We used 10-fold cross validation to compare the performance of SVMs trained
using Model 1 and Model 2. In general, Model 1 SVMs had very low false
negative rates but had high false positive rates whereas Model 2 SVMs tended
to have lower false positive rates (Fig. 2). On average, Model 1 has 0.32 false
negative instances per SVM but 297.54 false positive instances and 4024 true
negative instances per SVM among 4347 proteins. Of the 374 SVMs trained, 84%
have less than 1 false negative instance using Model 1 (Fig. 2(a)). Therefore, we
conclude that this model is effective at classifying positive instances, although
it should be noted that Model 1 trained SVMs have high false positive rates.
Since properties of both models were desirable for our classifier, we developed a
meta-learning scheme that incorporated both models and includes a final filtering
step, in order to reduce the false positive rate.
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Fig. 2. Performance of SVMs estimated by 10-fold cross validation. (a) Cumulative
count of number of false negative errors produced by 374 independent SVMs (b) False
positive errors produced by Model 1 and Model 2 for five randomly selected GO term
datasets.

3.2 Test Procedure

Data flow for the prediction step is shown Fig. 3. We focus on keeping the true
positive rate as high as possible so Model 1 is utilized as first step. The Model

1 classifier plays a role of excluding most negative instances, but has the risk of
making false positive classifications. Proteins classified as positive by Model 1

are classified again using Model 2, thereby reducing the number false positive
proteins from 297.54 to 110.63 on average.

The third step is comprised of a decision rule that we devised based on
observations we made of the dataset. Under the assumption that a positive
relationship exists between GO terms and InterPro terms, we define the following
decision rule: For each GO term assigned to a protein, we identify whether a
training proteins exists with that GO term and an InterPro term assigned to the
predicted protein. If at least one association exists, the the predicted GO term
is retained, otherwise it is removed from the set of predicted GO terms.

We compared the precision of the suggested classification procedure (Fig. 3
Process B) with the precision of Model 1 alone (Process A), where precision
is measured as the number of true positive GO terms divided by the number of
predicted GO terms. Among the data set of 4347 proteins, we held out 40 proteins
to use for comparative analysis of the two classification procedures as well as for
comparison to other GO classification methods. Performance comparisons were
made using the 40 proteins held out from the training set. Precision was slightly
higher with the suggested classification method (Fig. 4).

3.3 Comparison to Other Methods

Using the training set, we prepared SVMs for each GO term. Precision is em-
ployed again as a metric to compare the performance of our method to that
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Fig. 3. Flow chart for the testing process. The dotted line represents use of Model 1

only (Process A). The solid line represents use of both Model 1 and Model 2 (Process
B). The filtering step is used in both cases.
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of other described methods. Because most of the automated GO annotation
methods are only available as web-based forms designed to process one protein
at a time, we compared the performant of our method to that of five different
GO annotation tools using nine proteins randomly selected from the hold out
set (Fig. 5). We used the author recommended confidence thresholds of 20% and
50% for the GOtcha and GOPET methods, respectively, and employed an e-value
cutoff of 1e-5 for GOFigure. IPR2GO is a manually curated mapping of Inter-
Pro terms to GO terms maintained by the InterPro consortium. Out method,
which we term Automatic Annotation of Protein Functional Class (AAPFC)
includes trained SVMs for every GO term in which ten or more positive protein
instances could be found in the training data set. On average, precision is 0.53
for AAPFC, 0.17 for GOPET, 0.05 for GOtcha, 0.29 in GOFigure, and 0.20 in
IPR2GO. Surprisingly, AAFPC outperformed IPR2GO, suggesting that there
are many protein functions that can be prediction from InterPro terms, that
cannot be described an a simple one-to-one translation table.
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Fig. 5. Comparison of the proposed classification method (AAPFC) to four other meth-
ods.

4 Conclusions

In this paper, we propose a method for assigning GO terms to proteins using In-
terPro terms as features and learning independent SVMs for each GO term. By
creating two data sets, each having different properties, and learning two SVMs
for each GO term, we developed a meta-learning scheme that benefits from the
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strengths of each model. Our long-term plans are to develop a system for assign-
ing GO terms to proteins using multiple feature types, including biochemical
properties (amino acid content, etc.), phylogenetic profile, sequence similarity,
and others. Our current strategy treats each GO term as an independent learn-
ing problem. This has some practical benefits in that individual classifiers or
sets of classifiers could be learned or re-learned over time without the need to
re-learn the whole system. On the other hand, this approach assumes that all
GO terms are independent. During our initial steps of data exploration and
data cleaning, we observed a high correlation coefficient among some pairwise
GO terms, indicating that there is dependency among some GO terms. There-
fore, future work we propose to utilize stacked generalization as an approach to
capture dependence among GO terms into the learning method. The outputs
of the classifiers described here can be used as inputs to another classifier, thus
enabling the dependence among GO terms to be utilized for classification.
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