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ABSTRACT

Motivation: An increasing body of literature shows that genomes of

eukaryotes can contain clusters of functionally related genes. Most

approaches to identify gene clusters utilize microarray data or

metabolic pathway databases to find groups of genes on chromo-

somes that are linked by common attributes. A generalized method

that can find gene clusters regardless of the mechanism of origin

would provide researchers with an unbiased method for finding

clusters and studying the evolutionary forces that give rise to them.

Results: We present an algorithm to identify gene clusters in

eukaryotic genomes that utilizes functional categories defined in

graph-based vocabularies such as the Gene Ontology (GO). Clusters

identified in this manner need only have a common function and are

not constrained by gene expression or other properties. We tested

the algorithm by analyzing genomes of a representative set of

species. We identified species-specific variation in percentage of

clustered genes as well as in properties of gene clusters including

size distribution and functional annotation. These properties may be

diagnostic of the evolutionary forces that lead to the formation of

gene clusters.

Availability: A software implementation of the algorithm and

example output files are available at http://fcg.tamu.edu/C_Hunter/.

Contact: mthon@tamu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

It is well known that genes in bacterial genomes are usually not
distributed randomly in the genome but are organized into
groups of transcriptionally linked genes called operons. Unlike
their prokaryotic counterparts, genes in eukaryotic genomes are
traditionally thought of as being randomly distributed among
the chromosomes. However, an increasing number of func-
tional and comparative genomic studies are revealing that, in
fact, gene clusters may be common in eukaryotic species (Hurst
et al., 2004; Lee and Sonnhammer, 2003). Furthermore, these
studies suggest that multiple mechanisms may be responsible
for forming gene clusters leading to levels of organization that

range from small clusters comprised of only a few genes to large
clusters spanning hundreds of genes.
Operon-like gene clusters are known to occur in

Caenorhabditis elegans and share many similarities with their
prokaryotic counterparts. Fungi also contain metabolic path-
way clusters though their structure differs considerably from
operons in C.elegans (Blumenthal, 1998; Spieth et al., 1993;
Zorio et al., 1994). Some fungal metabolic pathway clusters
have been shown to have coordinated gene transcription
through the action of cis-acting regulatory elements (Herbert
and Donald, 1975; Sophianopoulou et al., 1993). The yeast
(Saccharomyces cerevisiae) genome contains a number of
well-documented clusters, including the DAL and GAL
clusters, which contain six and three genes, respectively
(Cooper,1996; Hittinger et al., 2004). Filamentous fungi also
contain a number of metabolic pathway clusters that consist of
genes for biosynthesis of primary or secondary metabolites
(Keller and Hohn, 1997). In all of these cases, the gene clusters
are relatively small in size, often containing less than 15 genes
arranged adjacent to one another on the chromosome.
One of the first genome-wide analyses of metabolic pathway

clustering in eukaryotes revealed that gene clusters may span
large segments of the genome (Lee and Sonnhammer, 2003).
Their method examined genes linked to the same pathway
described in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Kanehisa and Goto, 2000). The average distances of
gene pairs within the pathway were compared to the distances
calculated from randomized gene order. Two important
conclusions could be drawn from this study. First, in every
species examined, statistically significant clusters of metabolic
pathway genes were found, suggesting that gene clusters are
widespread in eukaryotes. Second, gene clusters were not
necessarily comprised of sets of adjacent genes. Many clusters
were sparse, i.e. they were comprised of genes belonging to the
same metabolic pathway that were spread out over large
segments of the genome but were nevertheless much closer to
each other than expected by chance. In fact, a large number of
gene expression studies are now showing that co-expressed
genes have a tendency to be clustered and that the genes in these
clusters tend to have related functions (for a review, see Hurst
et al., 2004). It is important to note, however, that gene clusters
are not always comprised of genes belonging to the same
metabolic pathway, nor do they necessarily have coordinated
gene expression. In this article, we define a gene cluster as a set
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of genes with a common function that are closer to one another
than is expected by chance.
The presence of gene clusters implies that clustering confers a

selective advantage and that some evolutionary mechanism
exists to promote the formation and maintenance of clusters.
Genes in clusters may belong to common metabolic pathways,
in which each gene encodes a protein (a gene product) that
functions as an enzymatic step in a cellular metabolic process.
Alternatively, gene products may form interaction networks in
which proteins interact directly with each other to form
multimeric proteins or serve as ligands and receptors in
signaling cascades. Clusters of interacting proteins have been
reported in S.cerevisiae (Teichmann and Veitia, 2004), and it
has also been suggested that human protein ligands may be
genetically linked to their receptors (Hurst et al., 2004). In
either case, there must be selective pressure to promote
clustering. Such selective pressure may arise through coordi-
nated gene expression, and it is believed that this is the most
common force that drives clustering. Alternatively, coinheri-
tance may provide the motive force for driving the clustering of
genes. This theory states that natural selection will favor genetic
linkage among genes that interact in some way, and they will
tend to be inherited as a group (Fisher, 1930; Nei, 2003). It was
recently demonstrated that among inbred mouse lines, exten-
sive regions of linkage disequilibrium exist that are correlated
with biological function (Petkov et al., 2005). These observa-
tions are consistent with the concept of coinheritance and such
a mechanism might also explain the clustering of metabolic
pathway genes reported by Lee and Sonnhammer (2003).
Another mechanism by which gene clusters may form is

through the tandem duplication of genes. Such homologous
gene clusters are widespread in eukaryotes (Thomas, 2006).
In C.elegans, Thomas (2006) showed that clusters of homo-
logous genes tend to be formed of species-specific gene families
that play roles in detoxification and immunity, and are found in
chromosomal regions that undergo rapid evolution and
reorganization. Further study of the content, function and
distribution of homologous gene clusters will likely reveal
important processes that regulate the formation of gene
families.
Computational approaches to identify gene clusters are

usually aimed at identifying specific cluster types, such as
those that correspond to metabolic pathways or those that
represent sets of co-expressed genes. A generalized approach
that can identify all clusters in a genome would be of great
value for the study of eukaryotic genome organization and
evolution. In addition, identification of gene clusters may help
to identify functional relationships among genes, and aid in the
discovery of metabolic pathways and protein interactions.
In this article, we describe a method for finding clusters of

genes that are annotated to common functional categories
described in the Gene Ontology (GO) (Ashburner et al., 2000).
The Gene Ontology is a common controlled vocabulary of
terms and phrases describing the function of genes and gene
products. The terms and relationships among the terms are
represented by a directed acyclic graph (DAG) in which vertices
represent GO terms and edges represent relationships among
similar terms. Genes can be annotated with GO terms creating
gene associations that can be used for whole genome analyses.

The Gene Ontology provides a rich framework for identifying
gene clusters, regardless of the evolutionary mechanisms
responsible for their formation. Our method can identify all
possible clusters of genes annotated to the same GO term or a
common parent term, and assigns p and e statistics that enable
statistical evaluation of the clusters. We also describe an
implementation of the algorithm and statistical test called C-
Hunter. To demonstrate the utility of our method, we apply C-
Hunter to the genomes of Escherichia coli and S.cerevisiae, and
show that clusters identified with C-Hunter correspond to well-
documented clusters in these species. We also perform a
comparative analysis of gene clusters in several eukaryotic
species and find species-specific variation in the number, size,
function and putative evolutionary origin of the clusters.

2 METHODS

2.1 Preliminaries

A gene cluster is defined as a group of genes that are annotated with the
same GO term or have the same parent term, and are also found within
close proximity to each other on a chromosome. Cluster size refers to
the number of genes in the cluster having the same GO term or parent
term. Cluster length refers to the chromosomal length occupied by the
cluster, including intervening genes that are not members of the cluster.

2.2 Algorithm and statistical evaluation of clusters

We represent each chromosome c by an ordered sequence of genes
ðg1, g2, . . . , gnÞ while ignoring the orientation of each gene gi on c. For
genomes with multiple chromosomes, we concatenate all chromosomes
together into a single sequence while disallowing clusters to span across
chromosomes. To investigate functional assignments of these genes, we
use the GO database (Ashburner et al., 2000), in which three rooted
DAGs are used to define hierarchical structures of increasingly specific
functional categories, with top level categories being biological process,
cellular component and molecular function. In each graph G ¼ ðV,EÞ,
each vertex v 2 V represents a functional category (called a GO term)
and each edge ðu, vÞ 2 E represents that u is functionally less specific
than v.
Since each gene gi can have more than one functional assignment, let

FðgiÞ % V be the set of all GO terms that are associated with gi.
Although these associations are typically on the bottom level of G, we
are also interested in investigating the clustering of genes that belong to
less specific functional categories. We consider each vertex v 2 V and let
R(v) be the set of all vertices that are reachable from v in G (Fig. 1),
which gives all GO terms that are more specific than v in addition to v.
We study the clustering of genes that belong to this category by finding

Fig. 1. Illustration of the set R(v) of all reachable vertices from a given
vertex v in a directed acyclic graph G. Filled circles denote vertices in
R(v), while hollow circles denote other vertices.
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all genes on the given chromosome c that are associated with at least
one GO term in R(v). This defines a subsequence cðvÞ ¼ ðg01, g02, . . . , g0n0 Þ
of c so that RðvÞ \ Fðg0jÞ 6¼ ; for each j. We think of each substring
ðg0j, g0jþ1, . . . , g

0
jþk0'1Þ on c(v) between the jth gene and the ðjþ k0 ' 1Þth

gene as a potential gene cluster that spans the region
ðgi, giþ1, . . . , giþk'1Þ on c between the ith gene and the ðiþ k' 1Þth
gene, where gi ¼ g0j and giþk'1 ¼ g0jþk0'1 (Fig. 2 and 3). The probability
of finding such a cluster of size at least k0 is given by the hypergeometric
distribution as

pðn, n0, k, k0Þ ¼
Xk

i¼k0

n0

i

! "
n'n0

k'i

! "

n
k

! " ,

where

n ¼ Number of genes in a genome
n0 ¼ Number of genes associated with a common parent term
k ¼ Cluster length
k0 ¼ Number of genes in a cluster:

8
><

>:

We evaluate its statistical significance by finding the expected number
of such clusters that span a region of length k on c, which is given by

eðn, n0, k, k0Þ ¼ ðn' kþ 1Þpðn, n0, k, k0Þ:

The details of the algorithm are given in Figure 3. To compute c(v),
first initialize its set of genes according to the function F. Then consider
each vertex u in reversed topological order (which can be obtained by
depth-first search in OðjEjÞ time (Cormen et al., 2001), and update c(u)
by considering each edge (u, v) in G and adding genes from c(v) to
obtain all the qualifying genes. Since there are at most n genes to add
along each edge and at most n genes to store in each vertex, the above
procedure takes OðjEjnÞ time and OðjVjnÞ space (there is no need to
compute R(v) explicitly). For a fixed vertex v and a fixed k0, since each

cluster ðg0j, g0jþ1, . . . , g
0
jþk0'1Þ can be obtained from the previous one in

constant time by removing g0j'1 and adding g0jþk0'1 (except for
the leftmost cluster), the time to obtain all the clusters is proportional
to the total number of clusters. To compute the e-value of each cluster,
for fixed n0, we preprocess and store all the O(n) binomial coefficients.
For fixed n0 and k0, we use O(n) space to store pðn, n0, k, k0Þ for
all k and obtain pðn, n0, k, k0Þ from pðn, n0, k, k0 ' 1Þ in constant time.
For each vertex v, it then takes Oðn2Þ time to compute all the e-
values. The overall time complexity for the entire algorithm is
thus OðjEjnþ jVjn2Þ. Since it is only necessary to store clusters that
have e-value below a cutoff, the space requirement is not prohibitively
large.

GO terms near the root of the GO graphs are considered to be more
generic while terms near the leaves are more specific, however, our
method does not consider the depth (i.e. distance from the root or
distance from a leaf) of the GO terms when computing the significance
of the clusters. Our rationale for this approach was 2-fold. First, GO
terms are created by annotators based on their knowledge of a
particular function. Thus, differences in the relative depth of ‘sibling’
terms may reflect the current state of knowledge of a term and not the
relative level of specificity. Second, we did not make an a priori
assumption that the GO terms with the most relevance to gene
clustering are farthest from the root.

2.3 Data sets

We selected species that represent a broad phylogenetic diversity, and
also had significant percentages of genes annotated with GO terms. The
genomes varied in the level of annotation, ranging from 25.1% in
D.rerio to 96.2% in S.cerevisiae (Table 1). Proteins annotated with GO
terms and files describing the order of genes within each chromosome
were obtained from NCBI (http://www.ncbi.nlm.nih.gov/). We used
gene2accession files and gene2go files, both from the NCBI ftp site to
obtain the ordered gene sequence for a given chromosome and the GO
term assignments for its genes, respectively.

2.4 Comparative analysis of gene clusters

Gene clusters that originated by gene duplication, selection for genetic
linkage of interacting proteins, or selection for metabolic pathway
clustering may be identified by comparing C-Hunter clusters to clusters
found in public databases or identified by various other clustering
algorithms. To identify clusters containing interacting proteins, we
compared C-Hunter clusters to the networks in the database of
interacting proteins (DIP) (Xenarios et al., 2000), which represent
protein interactions by undirected graphs in which nodes represent
proteins and edges represent interactions between two proteins. For
each C-Hunter cluster, we computed the mean minimum distance
between all possible protein pairs within each cluster. Clusters with
mean distance of less than two were considered putative interacting
protein clusters.

In order to identify putative homologous gene clusters, we compared
C-Hunter clusters to those formed by TribeMCL, a method for
clustering proteins into groups related by sequence similarity (Enright
et al., 2002). We used the default TribeMCL options with a BLAST
e-value cutoff of 1e'05. C-Hunter clusters corresponded to TribeMCL
clusters if they exactly matched or were a subset of a TribeMCL cluster.

Lastly, we searched for correspondence between C-Hunter and
KEGG (Kanehisa and Goto, 2000) to identify whether genes within a
cluster belong to a common metabolic pathway. We assume that a
C-Hunter cluster represents a metabolic pathway if all proteins in the
cluster are annotated to the same KEGG pathway.

Cluster 1
Cluster 2
Cluster 3

Fig. 2. Illustration of all clusters of size greater than one that are
associated with a vertex v in G.

Fig. 3. Algorithm to find all functionally related gene clusters on a
chromosome c which belong to each functional category that is
represented by each vertex v in G. The function F defines the set of all
vertices in G that are associated with each gene on c.
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3 RESULTS AND DISCUSSION

3.1 Implementation

We developed a software package called C-Hunter that
implements the above described algorithm and provides
output of the clusters and statistical test in human readable
format as well as comma-separated format suitable for import
into other applications. Our algorithm finds all gene clusters
that have an e-value below a user-specified cutoff and as such,
numerous overlapping gene clusters are often reported. To
improve readability of the output and facilitate comparative
analyses of multiple genomes, we also apply several filtering
steps. The standard filtering step consists of the removal of
clusters that are subsets of a larger cluster that has a lower
e-value (Fig. 4). We also implement a second optional filtering
step that either masks or removes highly similar, overlapping
clusters. In the second filtering step, the clusters are first sorted
by e-value. Then, starting with the cluster with the lowest e-
value, all other clusters that overlap by a user-specified
threshold and are annotated with the same or a child GO
term are labeled as members of a group of overlapping clusters.
This process is repeated for each cluster that has not yet been

labeled as a member of another group. A user-supplied
parameter defines whether the labeled groups are reported in
the output file or are ignored. For example, C-Hunter report
files can be found in the Supplementary Material.
The running time for whole genome analyses depends on

the number of genes in the genome and the number of
annotated genes. For instance, the S.cerevisiae data set that we
used for this analysis contains 6150 genes of which 96.2% are
annotated with GO terms (Table 1). The running time for this
data set including all filtering steps was 4 minutes on a system
equipped with a 2.8 GHz Pentium IV processor and 2 GB
of RAM.
We postulated that the primary limitation of our approach to

finding gene clusters would be in the quality and quantity of the
protein sequence annotation, and that there would be a
tendency to find more gene clusters in species with more
richly annotated genomes. The species we selected for our
analyses vary widely in the percentage of genes with functional
annotations, and the D.rerio and S.cerevisiae genomes contain
the least and most annotated proteins, respectively (Table 1).
Surprisingly, we found nearly identical percentage of genes in
these species within clusters. Furthermore, we found no

Table 1. Summary of gene clusters identified in eight species

Species Number of genes
in genome

Percent of genes
annotated

Percent of
annotated
genes in cluster

Average
number of
genes per cluster

Average
density

Number
of clusters

Arabidopsis thaliana 26518 90.4 6.17 8.83 0.80 208
Caenorhabditis elegans 3227 36.8 27.42 32.36 0.78 11
Danio rerio 17636 25.1 3.36 5.07 0.89 30
Drosophila melanogaster 7580 63.8 24.60 12.35 0.76 122
Escherichia coli 4237 57.6 40.53 24.28 0.77 54
Homo sapiens 20282 65.6 17.55 14.58 0.76 185
Mus musculus 29493 50.9 22.02 93.22 0.56 40
Saccharomyces cerevisiae 6150 96.2 2.25 5.32 0.79 25

Among clusters with e-value (0.001 and group threshold of 50%. Density ¼ k0=k.

GO:0000256 - allantoin catabolism
Cluster 1

p-value = 3.78e−12, e-value = 2.32e−08

GO:0000256 - allantoin catabolism
p-value=5.16e−09,e-value=3.17e−05

Removed

p-value=2.06e−09,e-value=1.27e−05
GO:0000256 - allantoin catabolism
Removed

GO:0006807 - nitrogen compound metabolism

p-value=7.54e−08,e-value=4.63e−04

Cluster 2

G
ro

up
1

YIR033W YIR034CYIR025W YIR026CYIR023W YIR024C
DAL81 MND2 YVH1 DAL1 DAL4 DAL2 DCG1 DAL7 DAL3 MGA2 LYS1

YIR027C YIR030C YIR031C YIR032CYIR029WYIR028W

Fig. 4. Gene clusters identified in the region of the S.cerevisiaeDAL cluster illustrating the filtering steps. ‘Removed Clusters’ were removed from the
report during the filtering step 1 because they are subsets of Cluster 1 and have larger e-values than Cluster 1. Cluster 1 cannot be removed because its
e-value is smaller than that of Cluster 2. Clusters 1 and 2 overlap and they were placed in a group during filtering step 2.
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obvious tendency for level of annotation to be correlated with
percentage of genes in clusters or number of clusters in the
other species examined (Table 1).

3.2 Validation of known gene clusters

We evaluated the sensitivity of our approach by using
C-Hunter to search for clusters in the E.coli genome and
confirming the presence of documented operons in the
C-Hunter output files. Most bacterial operons contain less
than 10 genes and when the default C-Hunter parameters are
used, large, sparse clusters predominate the search results.
Clusters representing operons are either not present in the
output because they have been removed by the first filtering
step, or are hidden among a long list of larger clusters. By
modifying the C-Hunter parameters to eliminate large clusters,
smaller operon-sized clusters can be more easily identified.
Therefore, we limited the search space to clusters containing
10 genes or less, and manually inspected the top 10 clusters in
the output for known E.coli operons according to the Yale
CGSC database (http://cgsc.biology.yale.edu/). Seven of the 10
clusters correspond to operons containing less than 10 genes
while the remaining three correspond to operons with more
than 10 genes (see Supplementary Fig. S1). Considering only
the seven clusters that matched operons below our search
threshold, we computed an error rate of 1.77 genes per operon,
where an error is either a gene in a C-Hunter cluster that is not
part of an operon or a gene in an operon that was not identified
by C-Hunter.
The clusters identified with C-Hunter tended to include

complete operons with additional flanking genes that have
similar functions. In the case of the his operon, an additional
flanking gene was identified as part of the cluster but was not
reported by the CGSC database. The his operon entry in the
database contains eight genes, while the C-Hunter cluster
corresponding to this operon contains nine genes. Further
inspection revealed that the additional gene, hisL, encodes the
his operon leader peptide, which plays a regulatory role in the
operon. We also found an overlapping cluster spanning a
genomic interval (cluster length) of 281 genes, that contains
10 genes annotated to ‘histidine biosynthesis’ (e-value
3.27e'07). Since the search was limited to clusters containing
10 genes, we postulated that a larger ‘histidine biosynthesis’
cluster might be identified if the search was not restricted. By
performing the search again with unrestricted cluster size, we
identified a cluster spanning a genomic interval of 621 genes
containing 12 genes annotated to ‘histidine biosynthesis’
(e-value 3.24e'07). This cluster may represent a level of
organization in the E.coli genome that is on a much larger
scale than that of operons.
We also validated the presence of well-documented gene

clusters in S.cerevisiae. While the S.cerevisiae genome does not
contain operons per se, it is known to contain clusters of genes
belonging to metabolic pathways. Gene clusters in S.cerevisiae
are not as well described as they are in bacteria, however, two
well documented examples are known, namely, the DAL and
GAL clusters. Therefore, we evaluated whether C-Hunter
could identify these clusters. Using the default parameters
(e-value cutoff 0.001 and no limits on cluster size), we identified

the presence of both the S.cerevisiae DAL and GAL clusters
as the first and sixth clusters in the result. Our algorithm
identified four of the six genes that make up the allantoin
cluster (Wong and Wolfe, 2005) within a genomic interval that
contains six genes (Fig. 4). Two of the six genes were not
identified as members of the cluster because their GO
annotations did not share a common vertex in the GO graph
with the other members of the cluster. The GAL cluster is
comprised of three genes and was found in its entirety in our
analysis (not shown).

3.3 Identification and comparative analysis of eukaryotic
gene clusters

We used the C-Hunter application to find gene clusters in eight
model organism genomes. For comparative analyses, we
employed an e-value cutoff of 0.001 and applied the optional
filtering step to remove clusters that overlap by 50% or more.
We retained the cluster with the lowest e-value within each
group for comparative analyses. Average cluster size varied
considerably among species (Table 1) with M.musculus contain-
ing the largest clusters. The smallest clusters were found in
D.rerio, averaging 5.07 genes per cluster. The gene clusters
identified varied not only in size but in density as well, with
M.musculus containing the most sparse clusters. Small clusters,
such as bacterial operons and the S.cerevisiae DAL and GAL
clusters, contained small numbers of genes with few intervening
genes that were not part of the cluster. At the other end of the
spectrum, many of the large clusters frequently found in
vertebrate genomes were interspersed with genes that were not
members of the cluster. For example, the top cluster in
H.sapiens (GO:0006334 — nucleosome assembly) spans a
genomic interval containing 84 genes, of which 26 are
annotated to the function. The distribution of the number of
genes per cluster in each species can be found in Supplementary
Figure S2.

Cluster size
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Fig. 5. Size distribution of clusters identified in each species.
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The size distribution of clusters varied between species as well
(Fig. 5). In all species examined, the majority of clusters were
small in size, often with less than 10 genes, however, some
contain large clusters with hundreds of genes. Large clusters
comprised of more than 100 genes were found in most species,
but were much less common than clusters with less than
10 genes. One exception is M.musculus which, unlike any of the
other species examined, contains predominantly large gene
clusters. The M.musculus genome has approximately the same
proportion of annotated genes as H.sapiens (50.9% versus
65.6%) (Table 1), yet has six times more genes per cluster and
four times less clusters. These differences are somewhat
unexpected since mouse and human have strongly conserved
gene order (Waterson et al., 2002; Zhao et al., 2004). While this
result may indicate differences in the evolutionary processes
that drive gene clustering in these species, it may also be due to
variation in the methods that were used to annotate the
genomes.
The Gene Ontology is divided into three separate graphs

reflecting three general functional categories that describe gene
function. To aid in identifying the functional constraints that
may be important in forming gene clusters, we investigated
whether there was a tendency in any of the species we examined
for functional gene clusters to be annotated to terms within the
three general categories. We considered number of clustered
genes annotated to each ontology rather than number of
clusters since the former can be compared directly to the
annotations represented in the whole genome. All of the
analyzed genomes contain genes annotated to GO terms from
all three of the ontologies at roughly equivalent levels, however,
in some species we found considerable bias in the representa-
tion of clustered genes among the three ontologies (Table 2).
The most striking examples are in the C.elegans and E.coli
genomes where 89.92 and 71.36% of the genes respectively were
found in the biological process ontology. C.elegans is unique
among eukaryotes in that, like bacteria, its genome contains
operons and some analyses suggest that as many as 15% of the
genes in this species are arranged in this manner (Spieth et al.,
1993). The biological process ontology contains terms describ-
ing metabolic processes, and it is likely that the relatively high

proportion of genes annotated to this ontology reflects a trend
towards clustering of metabolic pathways.
To gain insight into the evolutionary forces that may play

roles in the formation of the gene clusters that were identified
with C-Hunter, we assigned the clusters to categories, depend-
ing on evidence available to suggest relationships among the
proteins. Homologous gene clusters were identified by deter-
mining whether genes corresponded to a cluster of highly
similar proteins identified with TribeMCL. All species exam-
ined except for E.coli contained some percentage of homo-
logous gene clusters (Table 3). There was no clear association to
the overall percentage of duplicated genes in each genome,
suggesting that the presence of homologous gene clusters is not
merely a function of the rate of gene duplication. The human
genome contained more than twice as many homologous gene
clusters than mouse, which is consistent with the overall larger
number of clusters found in human (Table 1) and suggesting
that the increased number of clusters in human are predomi-
nantly clusters of homologous genes.
C-Hunter clusters representing groups of interacting proteins

or metabolic pathways were identified by searching for
corresponding clusters in DIP and KEGG, respectively.
This analysis was only performed with S.cerevisiae since it
was the only species that is relatively completely represented in
the DIP and KEGG databases. We found three clusters that
contained evidence of genes encoding interacting proteins
(Table 4). Cluster 8 contains four histone proteins that make
up the yeast nucleosome. Clusters 13 and 14 both encode genes
with products that are involved with thiamine biosynthesis.
Cluster 13 encodes SNZ3, SNO3 and THI5, while cluster 14
encodes SNZ2, SNO2 and THI12 and comprise two clusters of
homologous sets of genes (Rodrı́guez-Navarro et al., 2002).
We found six clusters that contained genes annotated to the

same KEGG metabolic pathway (Table 4). Four were also
identified as homologous gene clusters, so it is likely that the
cluster members represent redundant components of the
metabolic pathways. Two clusters, however, are not homo-
logous gene clusters and correspond to known metabolic
pathway clusters in yeast, including the biotin biosynthesis
cluster (Wu et al., 2005) (cluster 4) and the GAL cluster (cluster
6). Absent from this list is cluster 1, the DAL cluster, because

Table 2. Percentage of genes in each genome that were found in clusters
assigned to each of the three categories within the Gene Ontology

Species Biological
process

Cellular
component

Molecular
function

A.thaliana 34.74 21.86 43.41
C.elegans 89.92 1.46 8.62
D.rerio 26.85 2.68 70.47
D.melanogaster 24.37 3.19 72.44
E.coli 71.36 25.38 3.26
H.sapiens 31.25 42.17 26.58
M.musculus 34.12 28.08 37.80
S.cerevisiae 26.49 8.65 64.86

Among clusters with e-value (0.001 and overlap threshold of 50%.

Table 3. Percentage of genes and gene clusters comprised of duplicated
genes

Species Percent of clusters* Percent of genes

A.thaliana 79.51 60.49
C.elegans 18.18 65.24
D.rerio 60.00 81.55
D.melanogaster 51.64 44.48
E.coli 0.00 22.68
H.sapiens 50.81 58.77
M.musculus 22.50 55.58
S.cerevisiae 40.00 7.59

!Filtering was applied using a 50% overlap threshold.
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only three of the four genes from this cluster were identified as
components of the KEGG Purine metabolic pathway.
One interesting result is that the relative level of gene

clustering and average cluster sizes that we observed among the
species we examined was quite different from that reported by
Lee and Sonnhammer (2003). These authors reported the
presence of large metabolic pathway clusters in several species,
including S.cerevisiae, whereas our analysis identified predo-
minantly small clusters in this species. These differences can be
attributed to differences in the nature of the functional
annotation methods, the search algorithm or statistical tests
that were employed. Another important distinction is that our
approach utilizes all of the functional categories within the
Gene Ontology, and as such, it may report clusters that are
assigned to categories that do not immediately point to a reason
why the genes are clustered. For example, the functional
categories of gene clusters within the cellular component
ontology do not reveal whether the proteins are members of a
metabolic pathway or have coordinated regulation of expres-
sion, but such clusters may indicate that the proteins may have
common functions that are not represented within the
biological process or molecular function ontologies. Another

example is S.cerevisiae cluster 8, ‘nuclear nucleosome’, which
represents a group of histone proteins required for chromatin
assembly. While all four proteins of the cluster are also
annotated to ‘chromatin assembly or disassembly’, this GO
term did not result in clusters with e-values below our cutoff. In
this case, while ‘nuclear nucleosome’ refers to a cellular
component, it also implies a molecular function that is more
specific than ‘chromatin assembly’. It may be that the proteins
in this cluster are either under-annotated or an appropriate
term in the molecular function ontology does not exist. Still
another example is cluster 7, ‘binding’, which is a large cluster
containing genes encoding proteins that bind to other
substrates, including DNA, RNA and proteins. The genes in
this cluster are annotated to a variety of other functions, such
as cytoskeleton organization, cell division and protein proces-
sing. The functional relationship among these proteins, beyond
that of ‘binding’, is not immediately evident, nor is the
mechanism that drives the clustering, however, all of the
genes appear to have roles in core cellular functions. Clustering
of essential genes has been demonstrated in S.cerevisiae,
although the reasons why these genes are clustered have yet
to be established (Pál, 2003). Both clusters 7 and 8 are good

Table 4. C-Hunter clusters found in S.cerevisiae

Cluster
ID

GO term e-value Chromosome
number

Number
of genes on
chromosome

Cluster
length
ðkÞ

Cluster
size
ðk0Þ

Number
of genes
with GO
term ðn0Þ

TribeMCL DIP KEGG

1 0000256 - allantoin catabolism 2.32e'08 9 226 6 4 6
2 0006814 - sodium ion transport 1.59e'07 4 781 3 3 3 ) )
3 0006530 - asparagine catabolism 3.68e'07 12 532 13 4 5 ) )
4 0009102 - biotin biosynthesis 6.35e'07 14 408 3 3 4 )
5 0015392 - cytosine-purine permease activity 5.55e'06 5 293 7 3 3 )
6 0006012 - galactose metabolism 8.89e'06 2 419 3 3 8 )
7 0005488 - binding 2.26e'05 4 781 118 47 1059
8 0000788 - nuclear nucleosome 3.61e'05 2 419 13 4 12 )
9 0015891 - siderophore transport 5.33e'05 15 557 4 3 9
10 0019541 - propionate metabolism 5.54e'05 16 481 7 3 5
11 0005353 - fructose transporter activity 7.22e'05 4 781 3 3 15 )
12 0005353 - fructose transporter activity 7.22e'05 8 292 3 3 15 )
13 0009228 - thiamin biosynthesis 1.54e'04 6 136 3 3 19 )
14 0009228 - thiamin biosynthesis 1.54e'04 14 408 3 3 19 )
15 0006790 - sulfur metabolism 2.02e'04 12 532 5 4 57
16 0016070 - RNA metabolism 2.26e'04 8 292 34 14 450
17 0000943 - retrotransposon nucleocapsid 3.15e'04 7 561 4 4 94 )
18 0000943 - retrotransposon nucleocapsid 3.15e'04 10 226 4 4 94 )
19 0000943 - retrotransposon nucleocapsid 3.15e'04 16 481 4 4 94
20 0019483 - beta-alanine biosynthesis 3.25e'04 13 482 2 2 2 ) )
21 0003850 - 2-deoxyglucose-6-phosphatase

activity
3.25e'04 8 292 2 2 2 )

22 0015291 - porter activity 3.72e'04 2 419 8 4 35
23 0004099 - chitin deacetylase activity 9.75e'04 12 532 3 2 2 ) )
24 0008863 - formate dehydrogenase activity 9.76e'04 16 481 2 2 3
25 0003941 - L-serine ammonia-lyase activity 9.76e'04 9 226 2 2 3

The putative evolutionary forces that formed and/or maintain the clusters were inferred by searching for corresponding clusters in three different data sources.
Homologous gene clusters were inferred from clusters formed by TribeMCL; interacting protein clusters by DIP and metabolic pathway clusters by KEGG. Total
number of genes in S.cerevisiae genome is 6150.
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examples of how a broad-based search may uncover associa-
tions of clustered genes that may not be evident with searches
restricted to a more specific set of terms.

4 CONCLUSIONS

We have developed an algorithm and application to identify
clusters of functionally related genes in eukaryotic and
prokaryotic genomes. Our approach finds all gene clusters in
the data set and ranks them by their likelihood of occurrence by
chance. Post-hoc filtering and sorting options create a report
that is easy to read and enables researchers to evaluate the
biological relevance of the results.
We identified a cluster corresponding to four of the six genes

that make up the S.cerevisiae DAL cluster. The remaining two
genes, while annotated with GO terms, did not share a common
node in the GO graph with the other genes in the cluster.
While a new node representing all members of the DAL cluster
may eventually be added to the GO, its absence does not
preclude the identification of the cluster and indicates that new
gene clusters may be identified, despite the lack of a unifying
term in the GO graph.
The clusters identified with C-Hunter may be annotated to

functional categories that, like the DAL and GAL clusters,
provide clues as to the mechanisms that may play roles in the
formation of the clusters, but many functional categories do
not easily suggest a reason for the clustering. By combining
C-Hunter clustering results with information from other
sources, such as metabolic pathway or interacting protein
databases, we may begin to identify the evolutionary processes
or mechanisms that lead to the formation of these clusters.
Our comparative analysis revealed species-specific differences

in gene cluster content, size distribution and functional
annotations. Variation in the level of completeness of the
functional annotation could lead to differences in the number
and size of gene clusters and should be taken into consideration
when performing comparative studies. Despite this, some of the
differences in cluster properties are likely to result from species-
specific differences in the evolutionary processes that drive the
functional clustering of genes.
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